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1 Purpose

While trying to reproduce the PAPA station test-case GOTM results with
MOHID, we tumbled into a different conception of the Brunt-Vaisalla fre-
quency when using the pressure correction to the UNESCO density Equation
Of State (EOS) [1]. Our original version was

N2 = − g

ρ0

∂ρ

∂z
(1)

as is stated in the Cushman-Roisin [1] It worked fine with without pressure
correction on the EOS. However, turning the pressure on caused an extra
stratification leading to differences over 3 degrees in the SST of the PAPA
station test-case. Apparently, GOTM didn’t really use the pressure correc-
tion and would only use a different reference pressure. But this isn’t exactly
so, and this work pin-points exactly what why the guys at GOTM use a
correct expression for the stratification frequency, and why MOHID now
has the same implementation. Furthermore, this work suggests that dif-
ferent stratification frequencies exist, one for each fluid present within the
medium. This has direct implications in the evaluation of the stratification
frequencies for tracers other than temperature. This version of the stabi-
lization frequency doesn’t requires the hydrostatic approximation as does
Mellor’s version [7]. Thus it seems interesting to print out a simple, and
clear to understand, document relating this issue, especially because, since
that pressure correction has been included, nobody seems to really look at
it.
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2 Review of the state-of-the-art

G. Mellor [7] introduces a new density gradient ”suitable” for static stability
i.e a ”suitable” Brunt-Vaisalla frequency:

∂ρ̃

∂z
≡ ∂ρ

∂S

∂S

∂z
+
∂ρ

∂Θ
∂Θ
∂z

(2)

N2 ≡ −g
ρ

∂ρ̃

∂z
(3)

where the term ∂ρ
∂p

∂p
∂z in eq. (2) is excluded because

Physically one excludes the change in density a particule under-
goes by an adiabatic change in depth and pressure; it is only non-
adiabatic differences that are important to stability. G.M. [7]

If we use the hydrostatic approximation ∂p
∂z = −ρg and if we set ∂ρ

∂p = c−2

where c is speed of sound in the medium, then we obtain ∂ρ
∂p

∂p
∂z = −ρg

c2
.

∂ρ

∂z
=
∂ρ

∂S

∂S

∂z
+
∂ρ

∂Θ
∂Θ
∂z

+
∂ρ

∂p

∂p

∂z
=
∂ρ̃

∂z
− ρg

c2
(4)

Thus the Brunt-Vaisalla frequency becomes, according to G. Mellor

N2 ≡ −g
ρ

∂ρ̃

∂z
= −g

ρ

(
∂ρ

∂z
+
ρg

c2

)
= −g

ρ

∂ρ

∂z
+
g2

c2
(5)

He also states that

Another good approximation is ∂ρ̃
∂z = ∂ρΘ

∂z . Thus the potential
density function can be used to determine horizontal density gra-
dients which drive horizontal motions and vertical density gradi-
ents which govern vertical mixing. [7]

where ρΘ ≡ ρ (S, Θ). POM uses eq. (5) to calculate its N2.
R. Hallberg 2005 [3] defines

N2 = − g
2

α2

(
dα

dp
− ∂α

∂p

∣∣∣∣
Θ, S

)
(6)

where α is the specific volume or thermal expansion coefficient.
Kantha and Clayson [4] define:

N2 = gα

(
Γ +

dT

dz

)
− gβ dS

dz
(7)
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where α ≡ 1
ρ
∂ρ
∂T

∣∣∣
p, S

, β ≡ 1
ρ
∂ρ
∂S

∣∣∣
p, T

are the thermal expansion and haline

contraction coefficients and where

Γ ≡ − dT

dz

∣∣∣∣
σ

= gαT/cp (8)

is the adiabatic lapse rate, α′ being the specific volume.
The latter expression is equivalent to the following one, in terms of potential
temperature

N2 = g

(
α
dΘ
dz
− βdS

dz

)
(9)

as was suggested by Eden and Willebrand [2] or by McDougall and Jack-
ett [5]. MOM4 uses the Accurate and computationally efficient algorithms
of McDougall and Jackett [5]. ROMS uses the Jackett and McDougall 1995
EOS algorithm. It seems relevant to use potential temperature to calculate
buoyancy effects in the stratification since it includes the adiabatic lapse
rate effect.

3 The principle of Archimedes

We will show that equations (5), (6), (7) and (9) under the hydrostatic
approximation, are equivalent, within a certain approximation, to a more
generic and physically simpler to understand definition of static stability.
It relies solely on the principle of Archimedes when small disturbances are
applied to a Test Material Volume (TMV) at rest in a stable stratified fluid.
The TMV could be any material where the thermodynamic’s laws are valid.
Let us undertake the following mental experience: consider a cork of density
higher than surface seawater at rest in a stable stratified water column.
Now consider a small vertical disturbance of it’s mean rest state. Clearly,
the restoring buoyant force will be equal to the balance between the cork
and the displaced water weights (or densities) i.e. Fb = ∆ρg. Since the
cork’s density is the same of the surrounding medium when at rest, we can
state that buoyancy is proportional to the density’s vertical gradient and
that that a normalized measure of the effect of buoyancy is

1
ρ0

∂ρ

∂z
(10)

where ρ is the medium’s density and ρ0 a reference density (e.g. the cork’s
density). This leads to equation (1).
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However, when considering displacements of water parcels, these parcels no
longer behave like a cork. They undergo expansion and contractions of their
volume or they could exchange mass, heat etc... Thus, when applying a
disturbance to a generic TMV, one has to enter into consideration its own
density variations, Dρ̃. This wasn’t required for the cork, because the cork
hadn’t any density variations. This is not the case for a generic TMV em-
bedded in a given medium. The principle of Archimedes remains unchanged,
and the generic measure of the buoyancy effect in a stably stratified fluid,
called the square of the Brunt-Vaisalla frequency, is written as

N2 = − g

ρ0

(
dρ

dz
− dρ̃

dz

)
(11)

where the˜stands for the TMV state variables, thus ρ̃ is the TMV’s density.
Equation (11) is completely generic, has no approximations and yields the
following discretization:

N2
i = − g

ρ0

(
ρ (Θi+1, Si+1, pi+1)− ρ (Θi, Si, pi)

zi+1 − zi (12)

−
ρ̃
(

Θ̃i, S̃i, p̃i+1

)
− ρ̃

(
Θ̃i, S̃i, p̃i

)

zi+1 − zi


 (13)

where i, indexes the state of rest and i + 1, the perturbated state. If the
TMV is incompressible and has no material variation of its density (like a
cork), then equation (11) reduces to the original equation (1). We still need
to relate, somehow, the TMV’s density with the exterior density in order to
make some use of eqs.(11) and (12). Figure (1) illustrates the perturbation
applied to a seawater TMV initially at rest. It undergoes an adiabatic
transformation and conserves its mass, hence only the pressure changes.
How does the pressure changes? Well, it changes between its original value
and the exterior value, it can even fluctuate in time. Thus we need another
assumption:

∆h
∆t
� cs. (14)

where cs is the sound of speed. This allows the TMV to adiabatically adjust
its inner pressure to the surrounding pressure as the speed of sound is far
greater than the speed of the transformation. Hence, under this assumption,
p̃ = p all along the transformation (see figure X). Furthermore, if it’s a
seawater TMV, then Θ̃i = Θi, S̃i = Si and the discretized eq.(11) simplifies
to

N2
i = − g

ρ0

(
ρ (Θi+1, Si+1, pi+1)

zi+1 − zi − ρ (Θi, Si, pi+1)
zi+1 − zi

)
. (15)
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Figure 1: Illustration of an adiabatic and isohaline transformation of a sea-
water TMV, from a state of rest, to a perturbated state, away from equilib-
rium. The transformation is slow enough, so that compression forces have
time to restore the pressure inside the TMV along the way.
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This discretization is equivalent to the one used in GOTM , and, now, in
MOHID . Also, in the absence of pressure correction, (15) reduces to the

discretized form of (1).

4 The equivalence of the interpretation

Let us show the equivalence between this interpretation of the Brunt-Vaisalla
frequency and Mellor’s:
The variation of ρ̃ = ρ̃

(
Θ̃, S̃, p̃

)
along a path s parameterized by t is stated

in the material derivative

Dρ̃

Dt
=

∂ρ̃

∂Θ̃
DΘ̃
Dt

+
∂ρ̃

∂S̃

DS̃

Dt
+
∂ρ̃

∂p̃

Dp̃

Dt
(16)

=
dρ̃

ds

ds

dt
(17)

The line path is vertical, the thermodynamical process is adiabatic (dσ̃ = 0)
and mass conservative (DS̃ = 0). Consequently, DΘ̃ = 0. Thus equation
(16) simplifies and writes

dρ̃

dz
=
∂ρ̃

∂p̃

Dp̃

Dt

(
dz

dt

)−1

(18)

The variation of the residual scalar field ρ = ρ (Θ, S, p) along a path s per
line element ds, is stated as

dρ

ds
=
∂ρ

∂Θ
dΘ
ds

+
∂ρ

∂S

dS

ds
+
∂ρ

∂p

dp

ds
. (19)

In this case, it rephrases as

dρ

dz
=
∂ρ

∂Θ
dΘ
dz

+
∂ρ

∂S

dS

dz
+
∂ρ

∂p

dp

dz
. (20)

Equations (16), (18) and (20) give the correct Brunt-Vaisalla frequency
stated in eq.(11). If we choose the adiabatic path, slow enough compared
to compressibility forces (dzdt << cs, where cs is the medium’s sound speed),
such that the inner pressure from the TMV always balances the medium’s
pressure, then Dp̃

Dt = dp
dt would hold, and eq.(18) would simplify under the

hydrostatic approximation to

dρ̃

dz
=
∂ρ̃

∂p

dp

dz
= −ρg

c2
s

(21)
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where cs is the speed of sound in the TMV. It is, approximately, the speed
of sound in the medium.
The Brunt-Vaisalla frequency then writes

N2 = −g
ρ

∂ρ

∂z
+
g2

c2
s

(22)

which is the same as equation (5). Q.E.D.
An alternative demonstration was already described by Mellor in the ap-
pendix of POM user’s guide [6].

5 Discussion

The assumptions are the Archimedes principle and the adiabatic, isohaline
perturbation with pressure equilibrium along its path. The hydrostatic ap-
proximation isn’t required, as is for Mellor, though it’s present implicitly
in the density EOS. The concept is clear and simple. It clearly implies
that in-situ temperatures need to be corrected for potential ones, because
of the adiabatic lapse rate effect. Also the use of the potential density with-
out pressure correction seems indeed a very good approximation, as was
already pointed out by Mellor. Of all the codes available for the calculation
of the Brunt-Vaisalla frequency (GOTM, ROMS, POM, MOM4, MOHID),
the GOTM’s approach seems the more direct-to-the-physics. Because it is
so simple it is probably the one that introduces less round off errors. The
others relate to the alternate equations reviewed in this work.
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